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The nonlinear differential equation describing propagation of finite amplitude ultrasonic waves in gases, liquids, and
solids is shown to have the same mathematical form. The nonlinearity parameter in each case is defined in terms of
fundamentally significant physical quantities. Waveform distortion is described, and the discontinuity distances are
compared. Recent results are given for gases, liquids, and solids and their significance is evaluated in terms of modern

condensed matter physics and engineering.

Introduction

§1.

Over the past two decades it has become apparent not
only that natural phenomena are distinctly nonlinear,
but also that such nonlinearity can be described in a con-
sistent way. No longer is it necessary to abandon a
measurement or an investigation at the point that the
amplitude becomes great enough that nonlinear behavior
is observed. This statement is valid for essentially all bran-
ches of physics, but it is especially true of investigations
in which acoustical phenomana are used. The subject of
nonlinear acoustics now can be understood to the point
that it is being used in such diverse fields as hardness
testing of steels,” improvement of resolution in
acoustical microscopy,? and the investigation of the rela-
tionship between lattice anharmonicity and bulk
nonlinearity in crystalline solids.” Such a wide range of
investigations more and more requires knowledge about
the general features of nonlinear physics in general, and
nonlinear acoustics in particular. The purpose of this
study is to identify some nonlinear phenomena and to
show that the nonlinear behavior of different media—
gases, liquids, and solids—is similar, although the
acoustical nonlinearities have different thermodynamic
origins. The approach is to show that the same nonlinear
differential equation describes gases, liquids, and solids,
then to identify coefficients. The different coefficients
allow one to define the origin of the nonlinearity in each
case. A perturbation analysis becomes the most useful ap-
proach, as will become apparent.

§2.

2.1 Equation of state

The same treatment can be used to derive the nonlinear
wave equation in gases and liquids. The difference in the
theory appears in the form of the equation of state. Let
us write the equation of state in the generally applicable
form of a Taylor expansion of the pressure in terms of
the condensation (the fractional change in density):
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Since the propagation of a sound wave involves perturba-
tions of the thermodynamic variables about equilibrium
values, the form of Eq. (1) is especially useful for describ-
ing sound propagation in general, and nonlinear
acoustical phenomena in particular. It is for this reason
that the ratio B/ A has become an essential parameter in
nonlinear acoustics, and its evaluation a prime objective
of many research efforts.

Although Eq. (1) is applied in this form to the descrip-
tion of the nonlinear behavior of fluids, this has not
always been the case. In fact, many of the nonlinear
acoustical phenomena were first described in terms of
ideal gases. The equation of state for an isentropic pro-
cess in an ideal gas usually is written
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where y=Cp/Cy is the ratio of specific heats.
Substituting Eq. (3) into Eq. (1) leads to the conclusion
that for an ideal gas the value of

B/A=y—1.
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Thus, one now has a connection between the nonlinear
behavior of liquids and ideal gases through the equation
of state.

2.2 Finite amplitude waves in fluids

The recent increase in interest in nonlinear acoustics
has been brought about by the increase in the number of
practical occurrences and applications of waves of finite
amplitude and the increasing possibilities for the evalua-
tion of numerical solutions to complicated nonlinear
equations. One can derive a nonlinear differential equa-
tion capable of describing a number of nonlinear
acoustical phenomena by applying a perturbation
analysis to the equation of state, the equation of motion,
and the equation of continuity, and keeping second order
terms in the dependent variables. Assuming an isentropic
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process and combining the equation of motion and the
equation of continuity with the equation of state, Eq. (1),
one obtains an equation in particle displacement ¢&:
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where a is the space coordinate measured along the pro-
pagation direction and C3=A4/p,. Expanding the func-
tion (1+94¢/da)”! into a power series one obtains
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The bracketed term is the power series expansion of the
function [1+ (3&/da)] ~%/4. Thus, the nonlinear equation
can be written in the familiar form
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This equation describes the propagation of a finite
amplitude wave in a fluid, and with the identification of
B/ A given in Eq. (4), it also describes an ideal gas. For
comparison with the equation describing solid state
nonlinearity it can be expanded in the form
9% 13 azc
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§3. Nonlinear Solids

The derivation of the nonlinear wave equation to
describe finite amplitude wave propagation in solids pro-
ceeds along different directions from that used for fluids,
although for special circumstances the resulting differen-
tial equation has the same form, with a set of slightly
more complicated coefficients. For many situations,
then, the same mathematical description of the propaga-
tion of finite amplitude waves is appropriate for gases, li-
quids, and solids. These are the phenomena we will focus
our attention on.

The derivation begins with a definition of the elastic
constants in terms of an expansion of the elastic strain
energy ¢(#) in terms of the strains #;;
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The Cj. are the ordinary elastic constants. For linear
elasticity theory they are the only constants defined.
Since we are concerned with nonlinear effects that can be
explained only by introducing higher order terms, we will
call the Cj the second order elastic (SOE) constants
since they are coefficients of the second powers in strains.
The Cijwimn, then, are the third order elastic (TOE) con-
stants.

To derive the nonlinear differential equation for
describing finite amplitude waves in a solid, Lagrange’s
equations for continuous media are used. The derivation
requires only the definition of the strain and the assump-
tion that the elastic energy is a function of the strain
alone, which means that the solid is assumed to be a
lossless continuum in which attenuation and dispersion
are negligible.

To orient the a, axis along the direction of propagation
one must use a rotation matrix to transform the strain
matrix because the elastic constants defined by Eq. (9) are
defined with respect to the crystalline symmetry axes. By
choosing to write the displacements &; parallel (or perpen-
dicular to) the propagation direction, one can use the
Lagrangian procedure followed by rotation operations
appropriate to the crystalline symmetry and write the
nonlinear wave equation in the form
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where the A;; are known linear combinations of SOE con-
stants and the B;; are known linear combinations of third
order elastic constants. Although the mathematical form
of Eq. (10) already can be recognized as being the same
as that in Eq. (8), the comparison can be facilitated by
specializing Eq. (10) to cubic symmetry.

If one considers wave propagation along the pure
mode directions in a cubic crystal, then one finds that
pure longitudinal waves propagating along the principal
directions [100], [110], and [111] are described by a
nonlinear wave equation of the form
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where C3=K,/ po, and K is a linear combination of SOE
constants and Kj; is a linear combination of TOE con-
stants as given in Table 1. Written in this form it is ap-
parent that the mathematical form of Eqs. (11) and (8) is
the same. Thus, longitudinal waves propagating along
pure mode directions in crystals (or in isotropic solids) ex-
hibit nonlinear effects which are similar to those ex-
hibited by liquids and gases. To emphasize the similarity
of the behavior of finite amplitude waves in gases, li-
quids, and solids, we will define the ratio of the
coefficients of the nonlinear term to the linear term in
Eqgs. (8) and (11) as the nonlinearity parameter 3 and list
it along with the square of the speed of a small amplitude
wave C%in Table 2. These two quantities are fundamen-
tal to nonlinear acoustics. Using them one can write Egs.
(8) and (11) in the final form

Table I. K, and K; for [100], [110], and [111] directions.
Direction K, K,
[100] Cll Clll

1 1
[110} E[Cll+cll+zc44] Z[C|1|+3C112+120156]

1 1
[111] ?[Cll+2Cl2+4C44] §[C1u+6cuz+120144

+24C)46+2C 15+ 16Cisql
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Table II. Parameters entering into the description of wave propaga-
tion in nonlinear gases, liquids, and solids.

Parameter Ideal Gas Liquid Solid
Cq YPo/ po Alpo K/ po
+1 B/A+2 <K3+3>
B Y 2
R i ﬁ—ﬁ%azﬁ 12
a2 °\oa® " 9q 9a (12)

which can be applied to gases, liquids, and solids by us-
ing Table 2. Generally speaking, the magnitudes of § are
such that nonlinear effects are noticeable at lower fre-
quencies in gases, then become important at higher fre-
quencies in liquids and solids.

§4. Solution of Nonlinear Equation

The nonlinear equation can be solved under the
assumption of a sinusoidal driver at a=0. An exact solu-
tion for the particle velocity u=09¢&/ 9t is
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where w and k are the frequency and propagation con-
stant of the wave, J is an arbitrary constant, and J, is the
nth order Bessel function. The quantity L is the discon-
tinuity distance, a parameter of considerable significance
to nonlinear acoustics.

By making a power series expansion of the solution,
one can obtain an expression for the particle displace-
ment & as a function of the distance a from a sinusoidal
driver in the form
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which is especially useful for the study of solids. Equa-
tion (14) shows that a second harmonic is generated
whose amplitude is proportional to the nonlinearity
parameter S. Knowing the proportionality constant and
measuring the amplitudes of the fundamental and second
harmonic allows one to evaluate the nonlinearity
parameter for pure mode directions in solids.

4.1 Waveform distortion

The growth of the second harmonic (and higher har-
monics) in Eq. (14) leads one to expect a waveform distor-
tion to occur as the wave propagates. Such waveform
distortion also can be predicted from the phase velocity
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which depends on the particle velocity # and the
nonlinearity parameter 5. Because of the variation, the
waveform distorts as indicated in Fig. 1.

(15)

4.2 Discontinuity distance

The waveform distortion shown in Fig. 1 occurs
because the phase velocity is a function of the particle ve-
locity u (Eq. (15)); however, this situation can exist only
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Fig. 1. Progressive waveform distortion in a finite amplitude
ultrasonic wave.

Table III. Discontinuity distances for common substances.

Discontinuity L in Meters

Substance Distance 1. ;1: g%_l\/}l?z

7.2x10*

Air 5 (mz/SCCZ) 0.02
W&y

Water 6.4x10° 0

(30°C) o, _

Copper 2% 107 e

[100) wzéo '

Germanium 1.9% 10 y

[100] o ,

2.9x%10°
IS:};'SCd TR -0.8
ilica P

for distances smaller than the distance required for the
leading edge of the waveform to approach a vertical
tangent. This propagation distance is called the discon-
tinuity distance L:
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where u is the particle velocity at a=0. A more useful
form for present purposes is

_2C}
 Bw2é,

where & is the particle displacement amplitude at a=0.

An impression of relative magnitudes can be obtained
if one uses Eq. (17) and the definitions of Table 2 to
evaluate the discontinuity distance for some known
substances. The results are shown in Table 3. In the sec-
ond column the discontinuity distance is expressed as a
number divided by w?,. These numbers would be quite
realistic if one used frequencies w and amplitudes
characteristic of experiments in the various substances.
For example, audio frequencies would be appropriate for
air. However, a comparison of the relative nonlinearity
can best be obtained by using the same magnitudes for
each substance. For this reason we have assumed an
amplitude of 1 A at 30 MHz for all substances listed,
even though attenuation in air would make an actual ex-
periment at this frequency very difficult. The values 1 A
and 30 MHz actually are appropriate for investigations
in solids. The magnitudes of the discontinuity distances
given in Column 3 give a good impression of the fact that
gases and liquids are much more nonlinear than solids.
The negative magnitude of the discontinuity distance for
fused silica results from its inherently negative nonlineari-
ty parameter and implies that fused silica is one of the
few materials that can sustain a rarefaction shock as the
discontinuity distance is approached.

amn
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§5. Recent Results

Nonlinear acoustics has made possible the measure-
ment of physical quantities that heretofore had not been
measured. At present scientists are correlating physical
behavior with these measured quantities. The coefficients
A and B in the adiabatic equation of state for fluids
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now are available for a significant number of fluids. A
typical value of the ratio B/ A for diatomic gases is 0.4.
This is considerably smaller than that for liquids. Values
of B/A, or the nonlinearity parameter B/A+2, are
measures of the relative nonlinearity of fluids. As shown
in Table 4, B/ A for water changes from 4.16 to 6.11 as
the temperature increases from 0°C to 100°C at at-
mospheric pressure.® As water is one of the principal con-
stituents of biological tissue B/A values for biological
tissues are being evaluated and compared with that for
water. For example, the B/ A values for cat liver are be-
tween 6.5 and 7.0, both in vivo and in vitro, so it is im-
plied that blood circulation in liver has little influence
upon its B/ A value.”

Table IV. Values of B/A for various fluids at atmospheric pressure.

Liquid Temperature °C B/A
Distilled water 0 4.16
10 4.63
20 4.96
30 5.22
40 5.38
50 5.55
60 5.67
80 5.96
100 6.11
Acetone 30 9.44
Benzene 30 9.03
Benzyl alcohol 30 10.19
Carbon tetrachloride 30 11.54
Carbon disulphide 10 6.4
25 6.2
40 6.1
Chlorobenzene 30 9.33
Cyclohexane 30 10.07
Diethylamine 30 10.30
Glycerine 20 8.80
Mercury 40.5 8.33
Methyl acetate 30 9.66
Nitrobenzene 30 9.88
Methyl alcohol 30 9.62
Ethyl alcohol 30 10.57
Propyl alcohol 30 10.70
Butyl alcohol 30 10.72
Toluene 30 8.30
Heptane 40 11.14
Octane 40 11.34
Nonane 40 11.27
Dodecane 40 11.33
Hexadecane 40 11.40
Liquid nitrogen —199 9.69
Liquid oxygen —199 9.56
Liquid methane —158 10.27
Monatomic gas 20 0.67
Diatomic gas 20 0.40

Values of the nonlinearity parameters of a number of
solids are now available. As indicated in Fig. 2, the
nonlinearity parameters of solids, especially for the [100]
direction, have proved to be virtually independent of tem-
perature. This fact is very significant to improving our un-
derstanding of the relationship between the nonlinearity
of a solid measured by acoustical techniques and anhar-
monicity of the interatomic potential function deter-
mined from thermal expansion, neutron scattering, or
other techniques.

Nonlinearity parameters of solids have been correlated
with their interatomic bonding with considerable success.
For example, in Table 5 are listed solids having cubic sym-
metry.® By examining a number of examples in each bon-
ding category it has become apparent that covalent bon-
ding produces solids with small nonlinearity parameters.
Thus solids with zincblende (diamond lattice) structure
such as silicon, germanium, etc. are found to have the
smallest nonlinearity parameters. The largest nonlineari-
ty parameters to date are found among the solids with
ionic bonding of the NaCl type. In NaCl one also finds a
large thermal expansion coefficient at room temperature.
It has not yet been firmly established that a large thermal
expansion coefficient always accompanies a large
nonlinearity parameter.

Finally, technologically important correlations are be-
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Fig. 2. Measured
parameters.

temperature  dependence of  nonlinearity

Table V. Comparison of structure, bonding, and nonlinearity.

Structure Bonding B Range of #
NacCl Ionic 14.6 14.0-15.4
BCC Metallic 8.2 7.4- 8.8
FCC van der Waals 6.4 5.8- 7.0
FCC Metallic 5.8 4.0- 7.0
Fluorite Ionic 3.8 3.4- 4.6
Zincblende  Covalent 2.2 1.8- 3.0
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ing made between the nonlinearity parameters of solids
as well as fluids. The most recent one is the correlation of
nonlinearity parameter magnitude with hardness in
steels.” Such correlations are defining the value of the
new nonlinearity parameter. They also are helping to
define the ultimate role to be played by nonlinear
acoustics in science and technology.
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