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Abstract

Composite
as transducers

piezoelectrics are very interesting
for future medical devices. This
paper compares the properties of ceramic-plastic
composites and of porous ceramics with various
structures of pores with each other. The emphasis
lies on those properties that are important for the
mentioned application. The properties of porous
ceramics were calculated based on Bruggemann's
theory, those of regularly structured composites
were calculated with a cell model. Here, the dis-
cussion is restricted to the case where the com-
posite can be considered as being a homogeneous
medium. The results for the calculations agree well
with the known measured values. It is shown that
within all the treated composite classes one can
find materials with a sufficiently high coupling
factor (=0.5), a low lateral coupling factor, a low
quality factor (~15), and a low acoustical impe-
dance (=8+10°% kg/m?s). Composites with very fine
internal structure are best suited for the applica-
tion in ultrasonic antennas. Several production
techniques are discussed. Among these, the photo-
lithographic methods offer interesting possibili-
ties for the preparation of composites.

1. Introduction

Today, piezoelectric ceramics are generally
used as transducer material in medical diagnosis
instruments having ultrasonic antennas which
function according to the pulse echo principle.
These ceramics offer a number of advantages such as

1. an efficient conversion of electrical into
mechanical energy and vice versa by their high
electromechanical coupling (k(=0.4-0.5)

2. the possibility of varying the ceramic’'s
permittivity for the electrical adaption to
the electronics in a wide range

3. sufficiently low mechanical (Q»10) and
dielectrical (tan8<0.05) losses to achieve a
high sensitivity.

On the other hand, they also have decisive
disadvantages. Most problematic is their high
acoustical impedance (Z=30'106 kg/m2s), making at
least 2 adaption layers necessary for a sufficient
broad-band adaption to human tissue. In addition,
the mechanical quality factors of most ceramics
with values of Q=50 are not low enough to allow
the highest possible bandwidth or the snhortest
possible pulse and therefore the best lateral
resolution. Since the individual array elements are
usually wider than they are tnick, the elements
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produce low frequent transverse vibrations which
might also be transmitted. Due to the much lower
absorbtion of low frequent sound waves in tissue, a
noticeable reduction in image quality is caused and
artefacts might be produced [1]. In modern arrays,
these disturbing transverse vibrations are
suppressed through a mechanical division (sash
sawing) of the individual elements into subelements
with a width to thickness ratio <1.

For transducers for high frequencies or with
complicated geometry (e.g. annular array), this
technique of sash sawing becomes increasingly
difficult. Thus, one tries to find piezoelectric
materials which make it possible to dispense with
this technigque and which also do not possess the
other disadvantages of piezoelectric ceramics.

have the
because

Piezoelectric plasties (PVF,) do not
negative properties of ceramics. However,
of their low electromechanic coupling and their
high dielectric losses, their sensitivity is very
limited. it is also very difficult to adapt them
electrically to the electronics because of their
low permittivity.

Since the properties of multiphase material do
not depend solely on the type and portion of volume
of the individual phases but also on their
interconnection#*, this brings about a new dimension
for optimizing material [2]. Even with the
combination of only two phases, such as
piezoelectric ceramic and plastic, a number of
piezoelectric composites can be produced [3}. Ir
one of the material phases is air, one normally
speaks of porous ceramics. Their properties can,
however, also be described well within the same
framework as composites [4].

The demands on the structural properties of
composites which are to be used in ultrasonic image
screens will be discussed in the following. Then,
the relevant properties of various composites will
be theoretically determined, compared with one
another, and their experimental confirmation will
be discussed. Finally, processes of preparing
suitable composites will be presented.

2. Composites for Medical Applications

As was described in the introduction, the
usefulness of a piezoelectric composite depends, on
the one hand, on its type of microstructure, i.e,
its connectivity, on the other hand, on the fine
detail of its structure.
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A finely divided ultrasonic array can be
viewed as a ceramiplastic composite with
connectivity 2-2%%, Comparison of this with the
connectivity pattern given by Newnham [2] should
show similar properties as those of composites with
connectivity 2-0, 1-0, 1-1, 1-2, 1-3. Since the
interconnection of the plastic phase is
insignificant, the simple structures 2-2 and 1-3
can be applied. Figure 1, left, shows a sketch of a
composite with 1-3 connectivity. Properties,
production techniques and application of composites
with 1-3 connectivity were extensively researched
in recent years [6,7,16—19]. These composites have
become an attractive material for medical
ultrasonic transducers. In addition, porous
piezoelectric ceramics with 3-3

and 3-0 connectivity possess piezoelectric
properties that are quite interesting for these
applications [4].

If a composite possesses a periodic
microstructure (period a ), the dimension of this
microstructure, i.e. the size of a plays an
important role. As soon as the wavenumber of
laterally moving waves (Lamb waves) is a multiple
of m / a , stop bands occur in the Lamb wave
dispersion relation. These cause disturbing
resonances in the response behavior of the
composite. These effects were studied in detail for
composites with 1-3 connectivity - in theory by
Wang et al. [5] and in experiment by Gururaja et
al. [6]. They found that a composite vibrates at
its thickness resonance frequency as a homogeneous
body if the transverse wavelength in the plastic at
this frequency is much greater than a (A, >> a ).
Since the transverse sound velccity in the plastic
is about half of the value of the longitudinal
sound velocity in the composite, this means
that a must be much sSmaller than the composite
thickness ( a <<t,). Under these circumstances,
the acoustical impedance of the composite is
independent of frequency, and its sensitivity is at
its maximum. Even where a /t, < 1/5, a
sensitivity three times higher than in pure PZT can
be gained [7]. It is evident that the condition

a /to<<1 for the best composites places enormous
demands on the production of these materials.

3. Theoretical Models for Composites

In this section, the dielectric, elastic, and
piezoelectric properties of a composite will be
calculated for the case where it can be regarded as
a homogeneous medium. These properties will be
presented in a form where they can be compared wWith
the experimental data won from common resonance
methods {8} in a form which is useful for
applications. The properties of composites with 1-3
connectivity (Figure 1, left), of porous ceramics
with 3-3 connectivity, and of porous ceramics with
3-0 connectivity and evenly distributed pores with
isotropic or anisotropic pore shape (Figure 1,
right) are investigated. The latter are interesting
because very finely structured porous ceramlecs can
be developed with photolithographic techniques.
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Fig. 1. Schematic representation of a composite

and a regular porous ceramic.

3.1 Irregular porous ceramics

Wagners theory [9] allows the calculation of
the effective permittivity ¢#* of a body that is
comprised of a material with permittivity e'!'

dispersed in low concentration v''<<1 in a material
with permittivity e' (Figure 2). Bruggeman [10}
calculated the effective permittivity for arbitrary
concentrations v''. Bruggeman similarly calculated
the bulk and shear moduli for isotropic materials
[11]. Tne "effective medium approximation" as
employed by Marutake [12] for porous ceramics is
based on areas of permittivity e' which are
dispersed in the effective medium with permittivity
e* (Figure 2). This method gives the same results
as Bruggeman's theory. Bruggeman's results can be
directly applied to unpoled porous piezoelectric
ceramics and this can also be extended to the case
of poled ceramics [4]. Since the permittivity of
the pores e"=gy 1s much smaller than that of the
ceramic e€=e¢', and since the bulk and shear moduli
of the pores equal zero, Bruggeman's equations can
be substantially simplified for porous ceramics
{u]. For example, for ceramics with 3-3
connectivity, one obtains the simple relation

c*(p) = e(i=-3p/2) (1)
for the effective permittivity €* as a function of
porosity. This is valid for porosities up to
p=0.6. Figures 3 to 9 show the results that were
found in reference 4 using this theory.

* Newnnam {2} introduced the term connectivity
for this.
** The first number describes the ceramic's

dimension of interconnection, the second the
plastic's dimension of interconnection.
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Fig. 2. Models for composites and porous
piezoelectic ceramics.

3.2 Regular porous ceramics

In Figure 1, right, the microstructure of a
regular porous ceramic is sketched. This ceramic is
comprised of cubic cells which all have the same
size, as shown in Figure 2, If an electric field or
a mechanical force is applied parallel to the edges
of the cells, then the average field strength <E>,
the average dielectric displacement <D>, the
average elastic stress <T> and strain <3> have the
same value in each cell. Through calculation of
these parameters for one cell, one can obtain the
effective material properties SaB" di,*, and
e4k" by employing the piezoelectric basic
equations.

&> = Sg¥<Tp> + dyy¥<E>

(2)
<Dj> = diB'<TB> + e§ L <E D>

The porosity p of the ceramic is given by wlt/a’.

According to the technique used, the porosity
can be varied in a way that either the relative
thickness of pores t=t/a or the anisotropy 8=t/w is
kept constant. It is reasonable to first calculate
the effective material properties for the former
case, i.e, as a function of p and 1. By replacing <
with r=p1/3-52/3 one obtains the results for
constant pore shape.

The calculation can be much simplyfied if the case
of an unpoled ceramic is taken singe the
calculation of the effective dielectric and elastic
properties is then not coupled. The effecative
permittivity of a porous ceramic in the pores'
thickness direction (3-axis) simply results in

533. = €(1—D/T) (3)

because e€/g¢>>1. For the case of polarized
ceramics, varying mechanical stresses in the areas
around the pores and near their top and bottom
cause a varying field distribution. This effect
leads to a slight additional reduction in
permittivity which peaks at p=0.4 and reaches

values of about 10%.

The calculation of compliances is shown with the
aid of the coefficient s,4 For the case of
mechanical forces in 3-direction (in the thickness
direction of the pores), an average mechanical
stress <T3> exists in the ceramic, while the
stresses <T;> and <T,> are equal to zero. Due to
differences in mechanical stress in the area m
around the pore, and the area b above and below the
pore, the strains

- . b _
Sa® = Su8Tg%; Su® = 848Ta° (%)
will also differ.
For an individual cell, however, the relations
§% = 8,5 5,m= 50 (5)

are valid.
From <Ty;> = <T»> = 0 one finds:

a(a-t)

L . le (6)
t(a-w)

Tmz—a-tch

2 t 2

The stresses in 3-direction are described by:
2
a

Tab = <T3>; T3m =T —
2

a? —w?

If one applies the Equations (6) and (7) to the
Equations (5), one obtains:

wet sD12
72 = . ¢ <T3>
{a+w) (a2 -tw) sD11+sD12
(8)
a Wt s,
T2 = D . <T3>

2 2
as (a?-w?) 8D 4D,

In addition, one obtains using Bquation (6), T,®
and T,™ as a function of <T3>. This allows, using
Equation (4), the calculation of all strains as a
funktion of <Ty>. From the average strain in
3-direction

t a-t s
<Si> o — S‘!m 4 o— S3b = 833.D<T3> (9)
a a
one finally calculates

D ODZ p-ip/i'(‘\‘T) (10}
1=p/t T e (-pr) (1) o

5330 = s 1e
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with ¢D=zs;,P/3,,D being Poisson's ratio for
the unpoled ceramic. Because <Sl>=Slm=Slb, one
obtains:

D
P oDep
]

0. ; (11)
83 5130 '*(1_.00)(1#;,7;)(1/';7.%) QDY (1-p/1)

In a similar way, one can calculate the parameters
3,1 *P and s8,,*D for <T;>30 and <T,>=<T3>=0:

p o tepe(1-/p/T)

D = T+ e = o (12)
11 ™ HJpq 1+l (1P )? ]

LU p/(1-t) + o> 103
B2 A Dy ()2 (140D) (1)

For pores with cubic shape (T=P1/3), the results
from Equations (10) and (11) equal those from
Equations (12) and (13) (isotropic material).

After the effective coupling factors have been
calculated, the coefficients S48 of the poled
ceramic can be calculated from the coefficients
SuBD Zf the unpoled porous ceramic, as shown in
Ref. i,

To calculate the piezoelectric moduli, we
assume that the electric field strength inside the
total cell area surrounding a pore is constant,
and that <T;>=<Ty>=<T3>=0. From this last condition
and assuming equal strain directly above, below and
to the side of the pore, one findsequations for the
calculation of the elastic stress components T1=T2
and T; as a function of E3 in these areas. These
equations can be used to calculate the strains in
the various areas; from those, the averaged strains
<8;> and <S;> and therefore d;," and dj;" can
be calculated.

One finds
p(1-1)
* . o — &+ f(p,1) (1)
%41 dal[ T(1/pe1) ’ ]
and
dy3¥ = da3[ 1+p-p/T4glp,T)]. (15}

The correction terms f(p,v) and g(p,1) in
equations (1l4) and (15) are, in a rather
complicated manner, dependent on p and 1, as well
as on the ratios s,,EB/s) E, s E/s | E,

S33E/SIIE, and dj;/d33. Their influence on the
result is small. For example, the effect of g(p,t)
on Ehe coupling factor k33' (calculated from

d3y ) in the entire range 0<p<1 is less than 2%.
For the coupling factor kj,*, the effect of the
correction term f(p,1) is more noticeable, It
causes a faster decrease of k31' with increasing
porosity, e.g. for cubic pores with p=z0.8 to values
of 0.16 instead of 0.21 without correction.

3.3 Ceramic-plastic composites

Figure 1, left, shows a diagram of the
microstructure of these composites, and Figure 2
shows the unit cell used for the calculation of the
effective material properties. If w is used to
dencte the width of a ceramic rod embedded in
plastic, the volume portion of the plastic is
vP=1-(w/a)? which we signify, analogous to
porosity in porous ceramics, with p (p=vp).

Since now the electric field strength E,C in
the ceramic and E3P in the plastic equal <E;>,
the calculation of the material constants can
easily be accomplished directly for a poled
ceramic. We examine the case where
<Ty>=<T,>=<T3>=0, and presently disregard lateral
stresses in the ceramic and in plastic. Given the
conditions (cell model)

S,C = ;P that means 8348 T304dy3<Ey>=s) )P T5P
and  <Tp> = 0 = weTyCu(a?4? ) TyP (16)

T;C can be calculated as a function of <Ey>.

With
DyC = dyyeTyC+eq3Te<By>, DyP = ePecEy>, an
and @e<Dy> = W oDy Ce(al+F )DyP (18)
we obtain: £
eP 2533 P
333.1‘ = a33T-( 1-p( 1~ p(1-k33 ¢ —) (19)
€33 s P 1-p

Since for practically all plastics ep<<e33T and
833%<s), P, Equation (19) reduces to

533'T=533T'(1-p) (20)

Therefore, disregarding lateral stresses was
justified.

The calculation of the compliances will be
demonstrated using 333' We will now examine the
case where the field strength in the ceramic is O,
and where <T;>=<T,>=z0. Under the last condition,
only elastic stresses parallel to the ceramic
surfaces occur in the plastic and therefore:

(a—w)-TlP=w-Tlc=w-T2°

and (21)
SHP=Slc=SZC
From the conditions
S3 p:S3c=<53>
(a2 -2 ) TyP4wP e Ty Czal e<Ty>, (22)

two further equations for calculating TyP,

T3P, T)©=T,%, and T3¢ as a function of <T3>
follow. With these, the strains as a function of
<T3> and therefore 833*E can be calculated.
Assuming sy,P/3,P~~1/2, we find
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1+aer q
- S.:E .

LN 13
1=p4aes pr (1+2q)

= 833

533

1-p-2peass; 3 B/s), B

[1-Cl+ar) -
1-p+a+s
with
a = 5, /s),P,
ro= U q1+B)/3
s = (2/3p) (1+20F4235, 8/ | E) (23)
qQ = 1/ ¥VT=p - 1.

For a<<1 and p<0.9, this reduces to:

s;3%E = s;,B/(1-p). (24)
With <8;> = 35, w/a+S Pe(a-w)/w (25)
and S, P = 31,P » (T P+T3P), (26)

one obtains for the case a<<1 and p<0.9
513%F = 3 Be[us(1-0)/ 1-p}/(1-p) 27)
with u = —(512E+2333E)/3313E-

In a similar way, we find for <T;>=<T3>=0
and <T;>$0, the coefficients s;;*Z and
SlziE.

In case a<<?' and p<0.§, we obtain:

511 *E = sy, Besy POI-0P?) (1-/Top) (28)

312'5 = 512E+513E-cp(1-/1—p)//1-p (29)

For calculating the piezoelectric moduli, we
consider <Tl>=<T2>:<T3>=O. With the conditions
E;3Ca<Eqy>, 53%=85;P=<83>, §,8=8,%=5,P,
and <T;>=<T3>=0, we calculate Tlcszc, Tac,

TyP, and T4P as a function of <E;>. From this
we can also calculate <S3> and dj;*. From

ae« <8> = we 5%+ (a-w) %LP (30
d3,* is calculated. With dy)/d33==1/2, we Tind:
{1=3P) =gP+1420P3/ 1-p +a £1(p}
d3y *=dg,y ' 2 : 3

1=5P +waeh(p)
. 1-gP 4aeg' (D) 5
dyq¥edyy—————— (32,
33 331-op2+a-h(p)

The correction terms f£'(p), &'(p), and n(p)
are_again dependent on the ratios s),%/s;;",
$138/5; 1 E, and sy38/5 B With a<<t,

one obtains:

P -
4 weg = +(1+20P)Y 1-p (33)
31 31 1+aP

d3a* = dj;

The above calculated effective permittivities,
compliances, and plezoelectric moduli can now be
used [8] to calculate the frequency constant N;¥,
Poisson's ratio o*D=s,,#D/s, #D, the
frequency constant N3¥*¢, the acoustical impedance

Z*¥, and the coupling factors k3, * and ky3*. The
frequency constant of the thickness mode can be
calculated for 0.4<ky¥<0.7 with an error <3% from

NHye = (1/2) » Joga#E/p® | (3W)

The term ca%*E used here is calculated from
sll*E, Sy, %, 513*3, and s33*E. The density
of a porous ceramic can be described through

p* = p(1-p), (35)

of a composite through

p* = p(1-p) + oP-p (36)
The parameter

Z% = 2« Ny¥*, - p¥ (373
describes the acoustical impedance. In additicn,
the thickness coupling factor k¢ * is of interest
in ultrasonic transducers. It can be calculated

from the effective compliances and the coupling
factors [13].

k33 ®~Ciekgy*

kyz*y = = (38)
/(10,2785 ) (1=Cpe kg #)

with ¢y = ,

and C2 =

The results shown 1n Figures 3-9 were
achieved with tre material parameters of a standard
piezoelectric ceramic (Vibrit 420 i14}) and those
of a plastic having the same =2lastic propertiss
FYF, (Table 1).

Az
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Table 1.

of Vibrit 420 [14] and
PVF, [15]

Material parameters

Vibrit 420
s;p B 154010712 mP /N e33Treg 1600
5128 -5.4-10-12 o?/N k3 0.69
s13F  -6.9-10"'% m?/N K31 0.35
s33E  18.7-10712 w? /N o 7.7+10% kg/m®
p = U3
PVDF
s;,P 380+ 1017 m?/N  eP/ey = 10
sy,P -165-10712 n?/N  oP  1.78:10% kg/m’

L. Results and Discussion
4.1 Interpretation of Results

Figures 3 through 9 show the results of our
calculations. Material parameters are shown as a
function of the material’s porosity and as a
function of the plastic's volume fraction vP=p in
the ceramic-plastic composite. The figures describe
the properties of the following materials:
1. a ceramic-plastic composite with connectivity
1-3 (the following C1); be called in
a porous ceramic with irregular porestructure
and connectivity 3-3 (material C2);
a porous ceramic with regular porestructure
and having a cubic shape (material C3);
4. a porous ceramic with regular structure
pores, where the pores show lamina-like
(material Cu4).
In the latter material, either the shape of the
pores, (shown in the curves t/w=1/2 and 1/5), or
their thickness (thin broken line) is kept
constant.
We will view the permittivities first (Figure 3).
Because eo<sp<<s, only the ceramic's dielectric
displacement ~ontributes Lo permitiivity.
Therefore ¢* will decrease iinearly with p in the
material €1 and CY4 if the thickness of the pores
vept constant ‘curve t/a=z1/5). In materials with
constant snape of pores, the cross section of
2lectrical flux is not proportional to £, ang
tnerefore e* no longer decreases iinearly wisn .
It is interesting that also for an irregular
structure of pores {(material C2) for p < 0.4, the
permittivity decreases linearly wWith D, as nas been
extensively discussed in Reference 4.

2.
3.

of the
shape

is

r
-
C

Figure 4 shows the frequency constant Ni* as
it is measured on slim rods which vibrate in a
length extensional mode perpendicular to
polarization and perdendicular to the ceramic rods

N

~
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Fig. 3. Permittivity of a composite and of porous
PZT ceramics.
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Fig. 4. Frequency constants of a composite and of

porous PZT ceramics
(length-extensional mode).

in C1, or the pores thickness in ClH. It is
remarkable that N,* decreases quickly even when the
valume portion of plastiec in C1 is low, but
decreases slowly with p in regular porous

ceramics. The fermer is caused by a steep increase
of sll* (because sllp>>sllE} even at low

plastic portions. Not until the plastic reaches
nigher volume fractions, is this effect compensated
by the decreasing density, leading to a decrease in
the slope of N;*. In conirast, in regular porous
materials the increase of s,,* with p is almost
completely compensated Dy “he decrease of p¥, Ny ¥
therefore decreases only slowly with p.

With flat pores, {(t/w<1} sy;%* will increase less
Witn p, leading to a very small decrszase of N ¥,
Because of the irregular structure, the conmpliance
of C2 increases faster with increasing porosity,
wnich then terminates in a strong decrease of N.*.
The value of Poisson's ratio in
zeramic-plastic composites and porous ceramics also
show a high difference. The parmeter|o¥| =
fs;o%/s;; * also decreases quickly with p at low
volume fractions of plastic p<0.,1., This can be
attributed to the simultaneous strong increase of
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Fig. 5. Poisson's ratio of a composite and of
porous PZIT ceramics.

8y, " with p. At medium porosity, the ceramic rods
hinder the transverse strain of the plastic. At
high porosities this effect diminishes more
quickly, and one finally obtains the relatively
high value for Poisson's ratio in plastic.

In a material with a cubic shape of pores,
b12'| decreases slowly with increasing porosity
because clamping is caused by the material walls
that are perpendicular to the applied forces. This
leads, in combination with the increase of s;*
with p to a relatively strong decrease of Jo¥ with
p. The circumstances are quite different when flat
pores are considered. Here |312'| increases with p
because the areas above and below the pores have to
take more strain and because here the transverse
stiffness is lower. The increase of s;,* with p
therefore causes a small decrease of |o®| with
p. In a similar way the behavior of |o# in
ceramics with irregular porous structure (C2) can
be explained.

The frequency constant Ny % of the
thickness mode is of immediate interest for the
transducer design. We will first examine the
composite Ct. The freqguency constant Na't
decreases quite quickly at low plastic fractions,
from the value of a ceramic vibrating in thickness
mode down to a value ~ 1500 m/s, as is often
measured for the longitudinal mode. The reason for
this is that the plastic layers increasingly reduce
the lateral clamping in the ceramic rods. When the
volume fraction of plastic reaches p>0.7, N3't
finally approaches half the value of the socund
velocity in plastic. In porous ceramics,the
decreases of the frequency constant N3¥*t must be
explained differently. This follows from the strong
increase of s;3% with increasing porosity. If this
already occurs at higher porosity o* of the
material, as is the case with flat pores
(e.g. t/w=1/2), one finds a stronger decrease of
N3*  with p. The material C2 can be treated
similarly.

Ny, [conmecTviry

! 200 }1_3 —
m/s [3_3 R
1800 - !
. \\\ :3-0 e el v
1600 - \‘Y -0 —— ¢ [ERE
: e
-~ L w
1400- \ N
\ TS
1200 - \\ ==
1000 -
-
800 - i'%
600[ .
0 0.2 0.4 06 0.8
P- >

Fig. 6. Frequency constants of a composite and of
porous PZT ceramics (thickness mode).
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Fig. 7. Acoustic impedance of a composite and of
porous PZT ceramics.

The acoustical impedance of the material also
is an important device parameter. It is described
by Z*, as shown in Figure 7. The numbers
immediately follow from Figure 6 and the behavior
of o® with p.

Figure 8 shows the electromechanical coupling
factors of the various materials. The high ratio
s“p/s“E causes the piezoelectric coefficient
dy3"® to practically equal dj; in the composite C1.
Since an increase in s,,*E with p just
compensates a decrease in 533'T Wwith p, it
follows that k;3;%=ks3. Although dj,* decreases only
slowly with p, k3;* decreases quickly with p even
at low plastic fractions because sll*E increases
correspondingly. The coupling factors of C2 were
extensively discussed in Reference 4,

Considering the porous ceramic C3, dj;* first
decreases because of mechanical stresses in the
ceramic, and later increases at high porosities
with p>0.6. This directly influences k33* because
the influence of the e;3*T 's and the sy, *E 's
dependence on porosity again compensate each other.

Authorized licensed use limited to: Colleen Brick. Downloaded on April 01,2024 at 15:38:45 UTC from IEEE Xplore. Restrictions apply.



4 k-
0.7 R ————
\\\ \ ———————— T
0.6 \ ~ .
N NS k33 CONNECTIVITY

0.5 \\4g—g \\1- 1= ——
i 1 =2

0 0.2 04 0.6 08
P ——— p T
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constants k'al and k*33.

The decrease of dq;* and k3 * is caused by
mechanical stresses in the walls of the ceramic. If
the ratio t/w of the pores decreases, the
parameters d33* and d;;* are increasingly reduced
by inner elastic stresses.

The thickness coupling factor k¢* is the
third essential device parameter. Its behavior is
shown in Figure 9. The coupling factor k%
describes the deflection in thickness direction of
a laterally clamped sample. The piezoelectric
transverse effect causes lateral elastic stresses
which reduce the deflection in thickness direction
by way of 313' (see Equation (38)).

This means that in the ceramic-plastic
composite C1, that k¢* rises quickly to values
near ky3*, because kg, * decreases quickly with p
and because |s),*/s) % as well as |[s)3%/s) %]

decrease at the beginning. For porosities higher
0.6, ky)* stays esgentially constant, but
Flz'/sll'l and

[s;3%*/3,,% start to increase,
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Fig. 9. Effective electromechanical coupling
constants k%3¢

resulting in a decrease of ky*, The increase of

ke* in C 3 can be explained in a quite similar

way. Naturally, the materials C2 and CU4 (t/w=1/2)
cannot show an increase of ky* because here kj3*
decreases with p. It follows then that the behavior
of k¢* in the materials C4 (t/w=1/5) and C4
(t/a=1/5) is essentially determined by the decrease
of K33* with p.

4,2 Experimental verification

A great number of papers on
piezoelectric ceramic-plastic composites has been
published in recent years. Most of these
publications viewed the properties of these
materials at low frequencies (see e.g. References
16, 17). There is relatively little data, however,
that was won from resonance measurements {18, 19].
One recent paper presents extensive data, but this
only for the compositions which are interesting for
applications (p=0.7, 0.8 and 0.9). Taking into
account the differences between our material and
the one presented in Reference 6, there is good
agreement for the parameters e¥%, NlE', and
N3t*. The frequency constants in Reference 6 are
slightly higher than our values. It seems that
s, P of the plastic used is lower than has been
assumed in our calculations. The acoustical
impedances, and the values of kg;* calculated from
ko in Reference 6, match our results exactly. The
tgeoretically predicted high thickness coupling
factors are only reached in very thin samples,
i.e. when the ceramic rods can vibrate unhindered.
In thicker samples (a/tg~1/3), coupling occurs
between the ceramic rods through transverse waves
in the plastic. This coupling reduces the
deflection of the rods, and so causes a decrease in
ki * down to values between 0.5 and 0.6 [6]. The
calculated high values for k¢* can therefore only
be reached in homogeneous composites (a/t,<<1).
Measurements in References 18 and 19 also agree
well with our calculations.

Measurements of the properties for irregular
porous ceramics with 3-3 connectivity were
described in Reference U, It can be seen that the
properties of these ceramics behave almost exactly
as shown in figures 3-9.

Data on regular porous ceramics with a cubic
shape of pores are not known to us. Kahn [20]
measured the first data on ceramics with
anisotropic pores., It is difficult to compare this
data with our results since important parameters
are still missing. Our first results of
measurements on samples with anisotropic pores are
shown in Table 2. The samples were produced by a
technique as described in the following.

These measurements agree very well the predicted
values.
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Table 2. Measured properties of piezoelectric
ceramics with anisotropic pores

t/a =1/5 Ny 1470 m/s
p =0. 1 N3¢ 1640 m/s
e/€g 850 Q 60

K3, 0.21 Qt 15
Kast 0.43

4.3 Discussion of the results

In this section our results will be discussed
in view of the application of various composites
for ultrasonic antennas in medical diagnostic
devices.

We will start with the acoustical impedances
of the varying materials, since, as mentioned in
the introduction, its high value in piezoelectric
ceramics is a decisive disadvantage in these
materials. Figure 7 demonstrates that no shown
material is suited for an immediate acoustical
adaption to human tissue. On the other hand, it is
obviously possible to reach acoustical impedances
of 8+10°8 kg/mz-s in all materials. It is necessary
though, that the anisotropy of pores in porous
ceramics not be too high. With this value of the
acoustical impedance, only one adaption layer
allows a sufficient adaption of the ultrasonic
transducer in a wide frequency range at high
sensitivity. For a further comparison of the
materials' properties it is reasonable to view the
data at those p-values where the acoustical
impedances equal 8+ 108 kg/mzs.

At this impedance, the frequency constant for
the composites C1 and C3 equals about 1300 m/s, and
for C2 and CU4 about 900 m/s. This means that the
thickness t, of a 3 MHz transducer is in the
first case about 0.45 ym, in the second case about
0.3 um. If we strive after a material which is as
nomogeneous as possible, e.g. with an internal
structure of period a ={1/5)t, (high sensitivity
[7]), the first case leads to a = 90 um. This means
that the diameter of the individual ceramic rods in
the material C1 is about 45 um (p~0.7%). Even if we
allow a ={1/3)t, - the material cannot be called
homogeneous yet, and ky* equals only about 0.5 -
the ceramic rods must not be thicker than 75 um. It
is obvious tnat nhigh requirements for the
production technology of composites exist even If
ultrasonic transducers operating at only 2 MHz are
considered. The reguirements are even higher for
the material Ch {a = €0 um). One does not expect
these problems, nowever, in materials with
irregular porous structure (material C2).

The thickness coupling factors of the various
composites witn Z* = 3+ 108 kg/mzs will be compared
next.

We expect excellent values for k¢* of about
0.65 in the composites C1 and C3. It is necessary,
though, that the above mentioned condition for
homogeneity is fulfilled. Even at a /tc = 1/3 the
effective thickness coupling factor reduces to
about 0.5 [6]. Since in C1 finer detailed
structures cannot be attained today, the material
C2 and C4 (t/w=1/2) offer an equally high coupling
factor. It should be mentioned though that in
ceramics with anisotropic pores, coupling decreases
with increasing anisotropy of the pore shape. For
this reascon, a ratio t/w=1/3 is desired.

The comparison of electrical and mechanical
losses in the various materials shows that these
values are low enough to allow high sensitivities
(tan§ < 0.05, Q, » 10). In addition, the quality
factor Q, with values between 10 and 20 is low
enough, so that a high bandwidth and a fast decay
of pulses can be gained. The low quality factors of
C1 were, for example, measured in Reference 6,
those of C2 in Reference 4.

Measurements on regular porous ceramics show
that the quality factor in thickness mode is low
for these ceramics. The increase of mechanical
iosses with increasing frequency (Table 2) indicate
Rayleigh scattering of ultrasonic waves at the
pores [4].

It is interesting that the effective
permittivities of the composites C1, €2, and C3 at
the acoustical impedance 8+ 10° kg/més equal each
other, and that the value of e/ep ~ 500 seems
suited for application. The permittivity of the
material CY4 is definitely lower. This does not
cause any essential problem, since the permittivity
of the starting material PZT can be chosen in wide
ranges. Therefore all the mentioned materials allow
good electrical adaption.

The comparison of the properties of the four
composites (CU with t/w = 1/2) showed that they are
all equally suited for ultrasonic antennas.
Ceramic-plastic composites, however, with their
present imperfect homogeneity (i.e. with a/t, =
0.5-0.75), offer one advantage [21]. Coupling
between the ceramic rods is so low that array
elements can be defined solely by electrode
patterning [22}. This yields similar conditions as
in sash sawed arrays. With increasing homogeneity
of the composites (decreasing a /t,), coupling
between the ceramic rods increases |[6]. The
advantage is then probably lost.

5. Technological Aspects

A great number of methods for producing a vast
variety of composites became known in recent

years. The most widely used methods for producing
composites with 1-3 connectivity have been
described by Klicker et al. [16] and by Takeuchi

i 22]. According to the method of Kiicker, PZT rods
are extruded and fired. Fired rods (typical
diameter =~ 0,28 mm) are aligned using an array of
appropriately spaced holes drilled in a pair of
brass discs bolted parallel to each other. Then the
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rods are cast in plastic., The desired samples are
sawed from these produced blocks and then lapped.
Takeuchi's method is quite similar to the sash
sawing of today's arrays. Ceramic platelets are
sash sawed in the x- and in the y-direction. The
PZT-pillars (typically 0.1x0.1 mm2) are then filled
with polyurethane. The two methods have in common
that their realization becomes the more difficult,
the smaller the desired structures are. Therefore
one tries to find a technique which avoids the
complicated steps in handling and manufacturing
detailed structures. A possible technique, which is
being investigated in our laboratory, is shown in
Figure 10, left. It is based on our method for
production of high quality ceramic foils. A plastic
foil, structured in the desired way, is set in
vacuum and there cast with ceramic slip. The plates
are dried and the plastic is burnt out at
relatively low temperatures. After that, the plates
are fired, then filled with plastic again, and
finally lapped on both sides until they have
reached the desired thickness. Doing this, the fine
ceramic rods become separated. The parts can be
electroded and poled by the usual methods.

A number of techniques to produce porous
ceramics have been described in reference 4., For
the producticn of ultrasonic transducers, only
those methods that allow for a sufficiently
detailed microstructure are suitable. It can be
demonstrated that methods based on the above-
mentioned technique of foil casting are
advantageous for the production of porous
ceramics. Very finely structured ceramics with
irregular pores can be made by mixing plastic
pellets into the ceramic slip or intoc the ceramic
powder [4]. Especially fine and regular internal
structures of any shape can be produced by a
combination of foil casting and photolithography
which is employed in semiconductor technology. In

Fotographic Method
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10. Structuring of piezoelectric ceramics.

the simplest case, one can produce porous ceramics
with regular structure of pores. Figure 10, right
shows schematically how to proceed. Green ceramic
foils are coated with photo resist or with a
plastic foil that can be structured by
photolithography. Then the desired pattern is
transfered to the photo resist by an exposure
process. After development, the desired plastic
structure - in the simplest case small discs -
remains on the ceramic foil. Coated green foils are
stacked and pressed at elevated temperatures.
Figure 11 shows a section through a foil stack
comprised of 8 ceramic green foils. The variation
in thickness of the plastic discs can be attributed
to a low stacking accuracy. After the plastic has
been burnt out during a defined temperature
programm in controlled atmosphere, the samples are
fired in a conventional way. Figure 12 shows REM
micrographs of a fired sample. The left part of

PLASTIC DISCS
(FOTO RESIST LAYER;

CERAMIC SHEETS
: 30 um

Fig. 11. Photolithographic method for production

of porous ceramics.
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Fig.

12. Microstructure of pores.

Figure 12 shows the pores in one layer as they have
been lapped by different amounts, the right part
shows a cross section of a pore.

6. Conclusion

For PZT-plastic composites with 1-3
connectivity, for porous ceramics with irregular
porous structure and 3-3 connectivity, and for
regular porous ceramics with 3-0 connectivity and
anisotropic pores, the applicability to ultrasonic
antennas fo medical diagnostic devices was
investigated. For this, the electromechanical
properties of these composites were calculated
dependent on the plastic's volume fraction or the
amount of porosity. It was shown that all these
materials can basically fulfill the requirements
for the application as ultrasonic transducers.
Since in all cases, acoustical impedances down to
8+ 10° kg/mzs can be attained, one adaption layer
suffices for the matching to human tissue. Thick-
ness coupling factors of about 0.5 are obtainable.
Possible higher theoretical values for ceramic-
plastic composites can only be realised with
extremly fine structured composites. Regular porous
ceramics with a cubic shape of pores also offer
very high effective thickness coupling factors.
This, however, decreases with increasing anisotropy
of the pores' shapes. The ratio of a pore's width
and height should not exceed the value 3.

An advantageous method to produce very finely
structured porous ceramics with anisotropic pores
uses green ceramic foils which are coated with a
photoresist layer, and can be structured by an
exposure process.
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