Noise - A stench to the ear, Undomesticated music, The chief product and authenticating sign of civilization

Ambrose Bierce - “The Devils Dictionary” 1907

Craig Nelson
National Institute of Standards and Technology
325 Broadway
Boulder, CO 80303
Email: craig.nelson@boulder.nist.gov
Topics

- Introduction and Review
- Noise Types
- Measurement Methods
- Measurement Calibration
- Common Measurement Problems
- Conclusions
WEATHER MONITORING

INDUSTRY and MILITARY NEEDS for
SPECTRAL PURITY

- Navigation
- Defense & Homeland Security
- Secure Communication
- Astronomy & Geodesy

Noise Metrology

Atomic Frequency Standards & Spectroscopy
NOISE

AM Noise

PM Noise
Difficulty of using a Spectrum Analyzer

- IF bandwidth too wide
- SA internal reference too noisy
- Not enough dynamic range
 - Phase noise is often below -170 dBc
- Cannot distinguish between AM and PM noise
Single Sideband Modulation
Amplitude Modulation

Power

Frequency
Phase Modulation

Power

Frequency
Basic Model for Noisy Signal

\[V(t) = A(1 + \alpha(t)) \cos(2\pi \nu_0 t + \phi(t)) \]

where:

- \(A \) = average amplitude
- \(\alpha(t) \) = fractional amplitude fluctuations
- \(\nu_0 \) = average frequency
- \(\phi(t) \) = phase fluctuations
Basic Definitions

\[V(t) = A(1 + \alpha(t)) \cos(2\pi \nu_0 t + \phi(t)) \]

phase = \(2\pi \nu_0 t + \phi(t)\)

\[\omega(t) = \frac{d}{dt}[\text{phase}] \]

\[\nu(t) = \frac{1}{2\pi} \frac{d}{dt}[2\pi \nu_0 t + \phi(t)] = \nu_0 + \frac{1}{2\pi} \frac{d}{dt} \phi(t) \]

Fractional frequency deviation

\[y(t) = \frac{\nu(t) - \nu_0}{\nu_0} = \frac{1}{2\pi \nu_0} \frac{d}{dt} \phi(t) \]

\[S_y(f) = PSD[y(t)] = \frac{2}{T} |Y_T(f)|^2 \quad 0 < f < \infty \]

[\(\frac{1}{Hz} \)]
Definition of Phase Noise

\[
S_\phi(f) = PSD^1(\phi(t)) = \frac{2}{T} |\Phi_T(f)|^2 \quad 0 < f < \infty \quad [\frac{\text{rad}^2}{\text{Hz}}]
\]

Single sideband phase noise

\[
\mathcal{L}(f) \equiv \frac{1}{2} S_\phi(f) \quad [\text{dBc} / \text{Hz}]
\]

\[
S_\phi(f) = \left(\frac{v_0}{f} \right)^2 S_y(f)
\]

Definition of Amplitude Noise

\[
S_\alpha(f) = PSD^1(\alpha(t)) = \frac{2}{T} |A_T(f)|^2 \quad 0 < f < \infty \quad [\frac{1}{\text{Hz}}]
\]
Noise Types

- **Additive Noise**
 - Thermal f^0
 - Shot noise

- **Multiplicative Noise**
 - Flicker f^{-1}
 - Higher order colored noise types $f^{-2}, f^{-3}, f^{-4}, ...$
Additive Noise

Power

Frequency
Additive Noise

Frequency

Power
Since it is uncorrelated to the carrier, additive noise always appears as equal amount of AM and PM Noise.

For Amplifiers:

\[S_\phi(f) = S_\alpha(f) = \frac{kTB}{P_l} \]

\[NF = -174 + NF - P_l \quad @ 300K \]
Multiplicative Noise
Multiplicative Noise
Additive and Multiplicative Noise

- Power
- Additive Noise
- Multiplicative Noise
- Frequency
- Fourier Frequency
- Phase Noise
Additive and Multiplicative Noise

10 GHz, Gain=32.5dB, NF=1

Offset Frequency [Hz]

L(f) [dBc/Hz]

Pin=-43.3dBm
Pin=-33.2dBm
Pin=-29.2dBm
Pin=-24.28
Pin=-21.22dBm, 1dB compression

San Francisco 2011
Noise Figure

• Noise figure is only a figure of merit of thermal additive noise.
• It has ZERO correlation to flicker or any other type of multiplicative noise.
• In the linear region of operation. The phase noise floor for a device can be determined from input power and noise figure as follows:

\[S_\phi (\text{floor}) = S_\alpha (\text{floor}) = \frac{kT_0 BNF}{P_{in}} \]

\[= -174 + NF - P_{in} \quad [dB \text{rad}^2 / Hz] \text{ or } [dB / Hz] \]

\[L (\text{floor}) = -177 + NF - P_{in} \quad [dBc / Hz] \]
Unlike additive noise, multiplicative AM and PM are not fundamentally correlated because they up convert by different mechanisms.
High Linearity => Low Multiplicative PM Noise (Flicker)
Separation between P1dB and IP3 is a simple indicator
> 15 dB has potential for low flicker
Typical PM Flicker Noise for Different Semiconductor Types

-170 -160 -150 -140 -130 -120 -110 -100

SSB Phase Noise [dBc/Hz]

X-Band GaAs AMP

X-Band HBT
X-Band Schottky Mixer

L-Band BJT
HBT Amp

HF-VHF BJT
HF-UHF Schottky Mixer

Offset Frequency [Hz]

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

San Francisco 2011

Courtesy of M. Driscoll
Noise Summary

Additive Noise Summary
- Noise power is uncorrelated to signal power
- AM = PM
- AM and PM noise levels vary inversely with carrier power

Multiplicative Noise Summary
- Noise power is correlated to signal power
- AM ≠ PM
- AM and PM noise levels are independent of carrier power
Typical Noise Types

- Passive Devices
 - Thermal f^0
 - Some have flicker (magnetics, carbon resistors) f^{-1}
 - Higher order noise may come from temperature effects f^{-4}

- Active Devices
 - Almost all have thermal and flicker f^0 and f^{-1}
 - Possible temperature effects f^{-4}

- Sources (May some or all of the higher order types)
 - White PM or Thermal f^0
 - Flicker PM f^{-1}
 - White FM f^{-2}
 - Flicker FM f^{-3}
 - Random Walk f^{-4}
Noise Types

- **White phase**: Thermal Noise, Shot Noise
- **Flicker phase**: Electronics, recombination-generation, traps
- **White frequency**: Resonator, integrated white phase
- **Flicker Frequency**: Resonator, integrated flicker phase
- **Random Walk**: Temperature, Shock, Vibration, Resonator

San Francisco 2011
Leeson’s Effect

Resonator

Barkhausen
Gain = 1
Phase Shift = $2\pi n$

Phase Shifter

Amplifier
Leeson’s Effect - Low Q

\[
S_\varphi(f) = \frac{FkT}{P_a} \left[1 + \frac{f_c}{f} + \left(\frac{f_0}{2fQ_L} \right)^2 \left(1 + \frac{f_c}{f} \right) \right]
\]

Phase Noise

- Oscillator Noise
- Amplifier Noise

Fourier Frequency

- Half Resonator Bandwidth
- \(f_0 \)
- \(2Q_L \)
Leeson’s Effect - High Q

\[
S_\varphi (f) = \frac{FkT}{P_a} \left[1 + \frac{f_c}{f} + \left(\frac{f_0}{2fQ_L} \right)^2 \left(1 + \frac{f_c}{f} \right) \right]
\]

Amplifier Noise

Oscillator Noise

Phase Noise

Half Resonator Bandwidth

\[
\frac{f_0}{2Q_L}
\]

Fourier Frequency

San Francisco 2011
Four Sources at Different Frequencies and Similar Power

SSB Phase Noise dBc/Hz at 500 MHz

-60 -40 -20 0 dBc/Hz at 500 MHz

10 GHz DRO
500 MHz SAW
100 MHz OCXO
5 MHz OCXO

Offset Frequency [Hz]
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

San Francisco 2011
All Sources Normalized to 10 GHz

SSB Phase Noise [dBc/Hz]

Offset Frequency [Hz]

-180 -160 -140 -120 -100 -80 -60 -40 -20 0

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

10 GHz DRO
500 MHz SAW
100 MHz OCXO
5 MHz OCXO
Composite Phase Noise Synthesis

SSB Phase Noise [dBc/Hz]

Composite Phase Noise Synthesis

Offset Frequency [Hz]

10 GHz DRO

500 MHz SAW

100 MHz OCXO

5 MHz OCXO

San Francisco 2011
Effects of Frequency Manipulation on Phase Noise

Translation or Mixing

\[S_A^\phi(f) + S_B^\phi(f) + S_M^\phi(f) \]

- Residual Noise
- AM to PM Conversion
- Noise Folding

San Francisco 2011
Frequency Multiplication

\[v_2(t) = \cos[N(\omega t + \varphi(t))] \]

\[\omega_2 = N \omega \]

\[S_{\phi_2}(f) = \frac{2}{T} \left| N \Phi_{1,T}(f) \right|^2 = N^2 S_{\phi}(f) \]
Phase Noise

Divider Noise Floor

20LogN dB

Phase Noise

Frequency Division

Fourier Frequency

Ideal Response

Typical Response

Oscillator Response

\[v_2(t) = \cos(\omega t + \phi(t)) \]

\[N = \frac{\omega}{\omega_0} \]

\[\left| \frac{S_{\phi^2}(f)}{N} \right|^2 = \frac{2}{T} \left| \frac{\Phi_f(f)}{T} \right|^2 \]

\[\frac{\omega}{\omega_0} = \frac{N}{2} \]

\[\frac{1}{\omega + \phi(t)} \]

\[(\omega t + \phi(t)) \]
Extracting Noise

Two noisy signals

\[V_1(t) = A_1(1 + \alpha_1(t))\cos(\omega t + \varphi_1(t)) \]
\[V_2(t) = A_2(1 + \alpha_2(t))\cos(\omega t + \varphi_2(t)) \]

Multiply them together

\[V_1(t) \cdot V_2(t) = \left[\frac{A_1A_2(1 + \alpha_1(t) + \alpha_2(t) + \alpha_1\alpha_2(t))}{2} \right] \cdot \left\{ \cos[(\omega_1 + \omega_2)t + \varphi_1(t) + \varphi_2(t)] + \cos[(\omega_1 - \omega_2)t + \varphi_1(t) - \varphi_2(t)] \right\} \]
Pha se Noise

Set $\omega = \omega_1 = \omega_2$

$$V_1(t) \cdot V_2(t) = \frac{A_1A_2(1 + \alpha_1(t) + \alpha_2(t) + \alpha_1\alpha_2(t))}{1 + \alpha_1(t) + \alpha_2(t) + 2\alpha_1\alpha_2(t)} \cdot \cos\left[\phi_1(t) - \phi_2(t) + \phi_3\right] + \cos\left[\phi_1(t) - \phi_2(t)\right]$$

When $\phi_3 = 90^\circ$

$$\sin x \equiv x, \quad \cos(x + 90) \equiv x$$

$$h_{LPF} * \left[V_1(t) \cdot V_2(t) \right] \equiv k_d \left[\phi_1(t) - \phi_2(t) \right] \quad \text{when} \quad \omega_1 = \omega_2 \land \phi_3 = 90^\circ$$
Amplitude Noise

\[\alpha_1 = \alpha_2 \]

\[V_1(t) = V_2(t) = A_1[1 + \alpha_1(t)]\cos[\omega t + \varphi(t)] = A_2[1 + \alpha_2(t)]\cos[\omega_2 t + \varphi_2(t)] \]

\[
\left[\frac{A^2 (1 + 2\alpha(t) + \alpha^2(t))}{2} \right] \cos[\phi_3]
\]

When \(\phi_3 = 0^\circ \) and \(\cos(0) = 1 \)

Remove DC term and neglect higher order term

\[
\left[\frac{A^2}{2} + A^2 \alpha(t) + \frac{A^2 \alpha^2}{2}(t) \right]
\]

\[h_{LPF} \ast [V^2(t)] \equiv \frac{A^2}{2} + k_a \alpha(t) \quad \text{when} \quad \phi_3 = 0^\circ \]
Phase Noise Measurement Types

- Homodyne or Residual – Single source
 - Noise Floor
 - Any two port device
- Heterodyne - Two source measurement
- Frequency Discriminator
 - Delay Line
 - Cavity Resonator
- Digital Measurement Systems
Two Oscillator Measurement

San Francisco 2011
Phase noise of source cancels

\[
S_{\phi_{\text{NoiseFloor}}}(f) = \frac{[\Delta \phi_R]^2(f) - [\Delta \phi_R]^2(f)}{K_d^2(f) \cdot BW} + \frac{PSD[V_{\text{rms}_\text{system}}(f)]}{K_d^2(f)}
\]
Phase noise of source cancels

Two devices are needed if they have a long delay

Two devices are needed if they change the frequency
System Calibration

- Static Phase shift (PM)
- Kd or Beat Frequency Method (PM)
- Modulation
 - Single Sideband (AM/PM)
 - Phase Modulation (PM)
 - Frequency Modulation (PM)
 - Amplitude Modulation (AM)
- Noise Standards (AM/PM)
Static Phase Shift

- A known phase shift is introduced, and the corresponding voltage change measured.
- Adjustable phase shifter (mechanical or electrical)
 - Switched delay lines
 - Programmable phase shift in a synthesizer

\[K_d = \frac{\text{Voltage Change}}{\text{Phase Shift}} \left[\frac{V}{\text{rad}} \right] \]
\[S_\phi(f) = \frac{\text{PSD}[V_{rms}(f)]}{K_d^2} \]

Remember:
\[\mathcal{L}(f) = \frac{1}{2} S_\phi(f) \quad [\text{dBc} / \text{Hz}] \]
Two Oscillator Beat Frequency Calibration
Calculating Mixer Sensitivity K_d

Period T

Make sure both positive and negative slopes are equal in magnitude and symmetric

$K_d (v / rad) = \frac{Slope(v / s) \cdot T(s)}{2\pi (rad)}$

Typically 0.3 to 0.4 V/rad for a saturated double balanced Schottky diode mixer
Singl e Sourc e Kd Calibration

Power Meter

50Ω

LPF

Substitution Source

San Francisco 2011
Mixer Sensitivity

- Frequency
- RF and LO power
- Mixer termination at all three ports
- Cable lengths

Calibration conditions must replicate the measurement conditions as closely as possible
Possible Errors Using K_d Calibration

- Determines gain only at a single frequency
- Noise is suppressed inside PLL bandwidth
- Requires open loop PLL or substitution source
- Beat configuration does NOT match actual measurement configuration
- Injection Locking
SSB Calibration Method

![Diagram of SSB Calibration Method](image-url)
Generates equal amounts of AM and PM Noise
Phase and amplitude modulation is detected at ½ the SSB ratio

\[S_\phi(f_c) \equiv S_\alpha(f_c) \equiv \frac{P_{v_0+f_c}}{2P_{v_0}} \equiv \frac{P_{v_0-f_c}}{2P_{v_0}} \]

A SSB tone at n dB below the carrier creates phase and amplitude noise with

\[S_\phi(f_{cal}) = n - 3dB \quad \text{or} \quad L(f_{cal}) = n - 6dB \]

\[S_\alpha(f_{cal}) = n - 3dB \]
Additive Noise Calibration Method
AM/PM Modulator

- Can be adjusted for pure PM or AM modulation
- Extremely flat frequency response
- Calibrates $K_d(f)$ with system locked
- Can be used to find true quadrature for minimizing AM leakage
MAXIMIZE detected AM signal
By adjusting phase shifter

\[S_\alpha(f_c) \cong \frac{P_{V_0-f_c} + P_{V_0+f_c}}{P_{V_0}} \]
Monitor Port MINIMIZE detected AM signal
Diode Detector By adjusting phase shifter

\[S_\phi(f_c) \equiv \frac{P_{V_0-f_c} + P_{V_0+f_c}}{P_{V_0}} \]
Tips for Measuring Gain vs. Fourier Frequency using Swept Modulation

- Measure power spectrum not PSD
- Use flattop windows for FFT
- Only small number of averages required
- 3-5 points per decade
- Create gain curve with cubic spline or linear curve
- Make sure tone does not saturate IF amplifiers
Calibration Curve at X-band

Gain : 23.1

Fourier Frequency (Hz)
Phase Noise of X-band Synthesizer

![Phase Noise Graph](image)
Tips for Measuring Noise

- Measure Power Spectral Density in Vrms/√Hz
- Use Hanning window
- Confidence interval depends on number of averages
- Confidence interval depends also on resolution and video bandwidth for swept analyzers
- Measure system noise floor.
Noise Floor Reduction Techniques

- Cross-Correlation
- Carrier Suppression
Cross-correlation PM Noise System for Two Port Measurements

\[\text{Noise}_{\text{Crosscorrelated}} = \text{Noise}_{\text{Correlated}_{1,2}} + \frac{\text{Noise}_{\text{Uncorrelated}_{1}} + \text{Noise}_{\text{Uncorrelated}_{2}}}{\sqrt{N_{\text{Averages}}}} \]
Correlated Noise Measurements

Voltage Noise (dBV/rtHz)

Channel 1
Channel 2
Cross Spectrum

-140
-150
-160
-170
-180
-200

1E+6 1E+7

Frequency (Hz)

Voltage Noise (dBV/rtHz)

1E+6 1E+7

100,000 Ave : 35 min

San Francisco 2011
Cross-correlation Oscillator PM Measurements

\[
S_{\phi}(f)_{\text{Cross}_{1,2}} = S_{\phi}(f)_{\text{DUT}} + \frac{S_{\phi}(f)_{\text{Ref}_1} + S_{\phi}(f)_{\text{Ref}_2} + S_{\phi}(f)_{\text{System}_1} + S_{\phi}(f)_{\text{System}_2}}{\sqrt{N_{\text{Averages}}}}
\]
Cross-correlation Oscillator PM Measurements

Three oscillator cross-spectrum measurement

San Francisco 2011
AM Measurements*

\[v(t) = k_{\alpha} P(t) \]

or

Diode Power Detector

In-phase non-saturated Mixer

\[k_{\alpha} P_0 = \frac{\Delta v}{\Delta P/P_0} \]

\[v(t) = k_{\alpha} P_0 (1 + \alpha(t))^2 \cong k_{\alpha} P_0 (1 + 2\alpha(t) + \alpha^2(t)) \]

\[S_{\alpha}(f) = \frac{S_{\text{Vrms}}(f)}{4k_{\alpha}^2 P_0^2} \]

*The Measurement of AM noise of Oscillators – Rubiola2005
Cross-correlation Source AM Measurements

\[S_{\alpha}(f)_{CrossAB} = S_{\alpha}(f)_{DUT} + \frac{S_{System_1}(f) + S_{System_2}(f)}{\sqrt{2N_{Ave}}} \]

\[S_{\alpha}(f)_{CrossAB} = \frac{S_{v_{AB}}(f)}{4k^2_{\alpha_A} P_A^2 k^2_{\alpha_B} P_B^2} \]

\[S_{\alpha}(f)_{CrossAB} = \frac{S_{v_{AB}}(f)}{K_a} \quad , \quad K_a = 4k^2_{\alpha_A} P_A^2 k^2_{\alpha_B} P_B^2 \]

The Measurement of AM noise of Oscillators – Rubiola2005
Two-port AM Measurements

\[S_{\alpha}(f)_{\text{Cross}_{1,2}} = S_{\alpha}(f)_{\text{DUT}} + S_{\alpha}(f)_{\text{REF}} + \frac{S_{\alpha}(f)_{\text{SystemA}} + S_{\alpha}(f)_{\text{SystemB}}}{\sqrt{2N_{\text{Averages}}}} \]

Reference AM noise must be less than DUT noise

Saturation can help in reducing AM Source noise
Digital Measurement Systems

- Carrier frequencies are sampled directly with A/D converters and phase information is extracted mathematically.
- No phase lock required
- Signals can be of different frequencies.
- Limited frequency range 1 - 400 MHz.
- Fourier Range of 1 mHz to 1 MHz.
- Limited sensitivity
Integral PM and AM Noise Standards

- Low noise signal source
- Two outputs with extremely low differential AM and PM noise
- Calibrated noise source
- Greatly simplifies AM and PM measurements
- Generates a calibrated level of equal AM and PM noise
Block Diagram of NIST PM/AM Noise Standard

- **Signal**
- **White Noise**
- **Bandpass**
- **Splitter**
- **Summer**
- **Phase Shifter**
- **Reference**
- **Modulated**

San Francisco 2011
Added Noise Appears as Equal Amounts of AM and PM

\[S_a(f) = S_\phi(f) = \frac{PSDV_n(v_0 - f) + PSDV_n(v_0 + f)}{2V_0^2} \]

While

\[\int_0^{\infty} S_\phi(f) \ll 0.1 \]
Basic Carrier Suppression Technique (Interferometric)
Basic Carrier Suppression Technique (Interferometric)
Delay Line Measurement Systems

\[S_\varphi(f) = \frac{S_v(f)}{k_d^2 |H(jf)|^2} \]

\[|H(jf)|^2 = 4\sin^2(\pi f \tau_d) \]
Delay Line Transfer Function

\[|H(jf)|^2 = 4\sin^2(\pi f \tau) \]

System sensitivity is proportional to \(\tau_d \)
Long delays reduce sensitivity due to insertion loss
Transfer Function has nulls at \(n/\tau_d \)
System sensitivity is proportional to τ_d
Long delays reduce sensitivity due to insertion loss
Transfer Function has nulls at n/τ_d
Single and Dual Source Measurements

<table>
<thead>
<tr>
<th>Direct Frequency Comparison (Delay Line)</th>
<th>Direct Phase Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages:</td>
<td>Advantages:</td>
</tr>
<tr>
<td>Doesn’t require reference source</td>
<td>Lowest noise floor</td>
</tr>
<tr>
<td>No PLL effects</td>
<td>Noise scales as f^{-1} near carrier</td>
</tr>
<tr>
<td>Simple basic calibration</td>
<td>Noise floor easy to determine</td>
</tr>
<tr>
<td></td>
<td>Very wide band performance</td>
</tr>
<tr>
<td></td>
<td>Can be used for residual measurement</td>
</tr>
<tr>
<td>Disadvantages:</td>
<td>Disadvantages:</td>
</tr>
<tr>
<td>Noise floor scales as f^{-3} near carrier</td>
<td>Requires reference of comparable quality</td>
</tr>
<tr>
<td>Noise floor harder to determine</td>
<td>Requires PLL to maintain phase lock between sources</td>
</tr>
<tr>
<td>Multiple delay lines required to cover different measurement conditions</td>
<td>Calibration needed for measuring inside PLL loop bandwidth</td>
</tr>
<tr>
<td>Not wideband – Frequency response has nulls</td>
<td></td>
</tr>
<tr>
<td>Not useful for residual measurements</td>
<td></td>
</tr>
<tr>
<td>Long delays have higher insertion loss</td>
<td></td>
</tr>
</tbody>
</table>
Optical Encoded Delay Line Measurement

~0.2 dB/km insertion loss vs 1 dB/m
Comparison of Noise Floors

Typical Noise Floors @ 10 GHz

-120
-130
-140
-150
-160
-170
-180
-190
-200

SSB Phase Noise [dBc/Hz]

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Offset Frequency [Hz]

Single Mixer
Correlated Mixer
Correlated Photonic Delayline
Correlated Interferometer (Rubiola)
Measurement Problems

- Mechanical Instabilities
- Phase locked loop effects
- IF Gain Flatness
- Delay effects
- RBW effects
- AM Leakage
- FM Port noise
- Ground Loops
Phase Locked Loop Effects

![Graph of Phase Noise vs Offset Frequency](image)
IF Gain Reduction in Presence of Noise Floor

Phase Noise (dBc/Hz)

Fourier Frequency (Hz)

San Francisco 2011
Delay Mismatch in Residual Measurements

Transfer function of delay line

Offset Frequency [Hz]

San Francisco 2011
Insufficient Resolution Bandwidth

Phase Noise

Frequency [Hz]

$L(f)$ [dBc/Hz]

San Francisco 2011
AM to PM Leakage in Mixer

San Francisco 2011
AM to PM Leakage in Mixer

Residual Measurement

Absolute Measurement

San Francisco 2011
FM Port (PLL) Noise

Phase Noise

\[S_\phi(f) = \left(\frac{\nu_0}{f} \right)^2 \]

\[S_y(f) = \left(\frac{K_\nu}{f} \right)^2 \text{PSD}(V_{rms}) \]

\(f^{-2} \text{ slope} \)

San Francisco 2011

K_\nu \text{ is VCO sensitivity in Hz/V}
Ground Loops and EMI

Noise floor at X-Band

$L(f) [\text{dBc/Hz}]$

Frequency [Hz]

San Francisco 2011
Ground Loops and EMI

- Power devices from batteries
- Shielding – Faraday and magnetic
- DC Blocks
- Replace IF Gain with RF gain (Interferometric)
- Isolate or remove computer connections
- Plug in AC power all at same place
- EMI filtered power strips/ Ferrite Cores
- Ground lifting plugs (dangerous)
- Isolation transformers (dangerous)
Conclusions

- Great care must be taken when calibrating the mixer sensitivity.
- Calibrating Kd versus Fourier can be achieved by utilizing a modulation technique.
- For ultra-low noise floors cross-correlation or carrier-suppression techniques can be used.
References

